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Abstract
Using renormalized field theory, we examine the dynamics of a growing surface,
driven by an obliquely incident particle beam. Its projection on the reference
(substrate) plane selects a ‘parallel’ direction, so that the evolution equation
for the surface height becomes anisotropic. The phase diagram of the model
is controlled by the properties of an effective anisotropic surface tension. Our
renormalization group analysis suggests the existence of a line of continuous
transitions and a line of (potentially) first-order transitions, which meet at a
multicritical point. The full scaling behaviour for the continuous line and the
multicritical point is discussed in detail. Two novel universality classes for
scale-invariant surface fluctuations are found.

PACS numbers: 05.70.Ln, 64.60.Ht, 64.60.Ak, 68.35.Rh

1. Introduction

The capability to grow nanoscale layers of atoms or molecules on a substrate forms an important
part of modern nanotechnology. Particles emitted from a source are deposited on the growing
surface whose characteristics are determined by parameters such as growth temperature,
surface diffusion, bulk relaxation and particle attachment versus detachment rates. In addition
to being clearly relevant for device applications, such surface growth problems also constitute
an important class of generic nonequilibrium phenomena [1, 2] which cannot be described in
terms of standard equilibrium ensemble theory.

A key goal of both theoretical and experimental investigations is the characterization
and understanding of the resulting surface morphology, especially in terms of its statistical
properties such as spatial and temporal height–height correlations. While local features
may play an important role for device performance, large-scale, long-time characteristics offer
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better opportunities for theoretical understanding. They are often universal, i.e., independent of
microscopic details, depending only on global constraints such as symmetries and conservation
laws. Here, we will explore the consequences of a reduced symmetry, which results if the
particles arrive under an oblique (non-normal) angle.

Let us briefly review different classes of models for surface growth. The first issue
is whether surface overhangs and shadowing effects can be neglected. For models with
near-grazing incidence, this is usually a poor approximation. Focusing on vapour-deposited
thin films, Meakin and Krug [3–5] considered ballistic deposition under these conditions.
They found that columnar patterns form which shield parts of the growing surface from
incoming particles and characterized these structures in terms of anisotropic scaling exponents,
differentiating parallel and transverse directions [5, 6]. In contrast, for normal or near-normal
incidence, overhangs and shadowing can often be neglected, and a description in term of
a stochastic equation of motion for a single-valued height variable becomes possible. A
second important issue is whether particles, once attached to the surface, can desorb again. If
desorption does occur, the surface relaxation is not conserved, and the leading nonlinearity in
the Langevin equation is of the Kardar–Parisi–Zhang form [7]. Models of this type are most
appropriate for chemical vapour deposition (see, e.g., [8, 9]) and sputtering processes [10].
Anisotropies have also been included by different authors [11–13]. In contrast, desorption can
often be neglected in MBE-type processes which occur at low growth temperatures (see, e.g.,
[14]). In this case, the surface relaxation terms in the Langevin equation conserve the number
of particles. For models of this type, the universal behaviour depends on whether the incident
beam is normal to the substrate or not. For normal incidence, the system remains isotropic
on large scales while oblique incidence generates anisotropies which persist under coarse
graining. While the former case has been investigated extensively (see, e.g., [15, 16]), only
partial results are available for the latter [17]. Noting that the reduced symmetry generates
novel leading nonlinearities suggesting potentially distinct universal behaviour, we consider
surface growth under oblique incidence more systematically in the following.

Our analysis begins with a model first suggested by Marsili et al [17] to describe MBE-type
or ballistic deposition processes with oblique particle incidence. Based on a coarse-grained
description in terms of a Langevin equation, the model adopts an idealized perspective [18–20],
neglecting particle desorption and bulk defect formation. As a result, the surface relaxation
becomes mass conserving and can be written as the gradient of a current, in an appropriate
reference frame. In contrast, the noise term in the Langevin equation is not mass conserving,
since it models the random arrivals of particles. Anisotropies emerge naturally in the Langevin
equation, since the particle beam selects a preferred (‘parallel’) direction in the substrate plane.
Extending the analysis of [17], we explore the consequences of an effective anisotropic surface
tension. Generated by the interplay of interatomic interactions and kinetic effects, such as
Schwoebel barriers, it plays a central role for the long-time, long-distance properties of the
model. Due to the anisotropy, it will generically take different values, denoted by τ‖ and τ⊥, in
the parallel and transverse directions. Depending on which of these parameters vanishes first,
ripple-like surface instabilities are expected, aligned transverse to the soft direction. This leads
to four different regimes with potentially scale-invariant behaviours. We analyse these four
regimes, identify the scale-invariant ones, and discuss the associated anisotropic roughness
exponents, using techniques from renormalized field theory. The original theory of [17] is
recovered only if both couplings, τ‖ and τ⊥, vanish simultaneously.

The paper is organized as follows. We first present the underlying Langevin equation for
a single-valued height field and briefly review the physical origin of its constituents. We also
give a full discussion of its symmetries which are important for the subsequent analysis. We
then turn to the renormalization group (RG) analysis. Identifying a set of effective coupling
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constants, and exploiting a Ward identity following from a (continuous) tilt invariance, we
compute the naively divergent one-particle irreducible (1PI) vertex functions to one-loop order
near the upper critical dimension. We analyse the four different cases separately: (o) both
τ‖ and τ⊥ are positive; (i) τ‖ remains positive, while τ⊥ vanishes; (ii) τ‖ vanishes, while τ⊥
remains positive; and finally, (iii) both τ‖ and τ⊥ vanish simultaneously. A renormalization
group equation allows us to derive the scaling properties of correlation and response functions
for those cases which possess infrared (IR) stable fixed points. We identify a complete set of
critical exponents, including four different roughness exponents for each case. Two of these
characterize real-space scans along and transverse to the beam direction, and the remaining
two are needed to describe scattering (i.e. momentum space) data with parallel or transverse
momentum transfer.

2. The model

If surface overhangs and shadowing effects are neglected, the surface can be described by
a single-valued height field, h(r, t). Here, r denotes a d-dimensional vector in a reference
(substrate) plane, and t denotes time. h is measured along the z-axis which is normal to
the substrate plane. The no-overhang assumption can be justified a posteriori provided the
interface roughness exponents are less than unity [17]. The time evolution of the interface
is described by a Langevin equation, combining deterministic terms, G[h], and the effects of
randomness, η, in the form

∂th = G[h] + η. (1)

The conserved nature of the (deterministic) surface relaxation can be captured by writing
G[h] = ∇ · F[h]. Several different terms, arising from surface diffusion and the incident flux,
contribute to G[h] and are discussed in the following.

The incident particle current has a normal component Jz and a component parallel to
the substrate plane, J‖. For particles of finite size ro, the effective flux must be measured
at a distance ro normal to the surface [21]. Since we focus on the long time, large distance
characteristics of the growing surface, the corresponding contributions to G[h] can be written
as a gradient expansion, neglecting higher order terms:

Gflux[h] = −Jz + J‖ · ∇h + roJz∇2h − roJ‖ · (∇h)∇2h. (2)

The first two terms of equation (2) can be removed by transforming into an appropriate co-
moving frame, via h(r, t) → h(r + J‖t, t) − Jzt . Next, we consider the effects of diffusion
along the surface. This restriction generates a quartic term, of the form [22]

Gdiff = −µ∇4h. (3)

Several comments are in order. First, we note the presence of the term roJz∇2h ≡ τ∇2h

in equation (2). Similar terms can arise from a step edge (Schwoebel) barrier [19, 23, 24],
coming with a negative sign, or a surface tension with a positive sign. This allows for the
possibility that the net contribution τ∇2h might vanish, playing the role of a critical parameter.
Even if we follow [17] and set it to zero in the bare theory, it is actually generated under
RG transformations and therefore intrinsically present. Second, the full rotational symmetry
within the d-dimensional space of the substrate is broken by the nonlinear term in equation (2).
As a consequence, any coarse-graining of the microscopic theory should give rise to different
couplings in the parallel and transverse subspaces, and this is in fact borne out under the
renormalization group. If the full anisotropy is incorporated into the theory, restricting
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rotational invariance to the (d−1)-dimensional transverse subspace, the Langevin equation (1)
takes the form

γ −1∂th = τ‖∂2
‖h + τ⊥∇2

⊥h − µ‖∂4
‖h − 2µ×∇2

⊥∂2
‖h − µ⊥

(∇2
⊥
)2

h

+ (∂‖h)
(
λ‖∂2

‖h + λ⊥∇2
⊥h

)
+ η (4)

after some minor renamings. Here, ∂‖ (∇⊥) denotes derivatives (gradients) in the parallel
(transverse) subspaces. It should be noted that the nonlinearity has also been split into two
distinct terms, with couplings λ‖ and λ⊥. The Langevin noise η(r, t) models the random
particle aggregation at the surface, with zero average and second moment

〈η(r, t)η(r′, t ′)〉 = 2γ −1δ(r − r′)δ(t − t ′). (5)

In principle, one could also incorporate a noise term of the form −2
(
D‖∂2

‖ + D⊥∇2
⊥
)
δ(r −

r′)δ(t − t ′) generated by (conserved) particle diffusion. In comparison to the aggregation
noise, this contribution turns out to be irrelevant. However, one could imagine situations
where diffusion is extremely fast, and aggregation occurs only very infrequently, so that
equation (5) should be replaced by its diffusive counterpart. This ‘conserved’ ideal MBE
[20, 25] is not considered here, and will be left for future study.

Equation (4) can be written in terms of surface currents j‖ and j⊥, according to

γ −1∂th = −∂‖j‖ − ∇⊥j⊥ + η (6)

with

j‖ = −∂‖
(
τ‖h − µ‖∂2

‖h − µ×∇2
⊥h

) − λ‖
2

(∂‖h)2 +
λ⊥
2

(∇⊥h)2,

j⊥ = −∇⊥
(
τ⊥h − µ⊥∇2

⊥h − µ×∂2
‖h

) − λ⊥(∇⊥h)(∂‖h).

Equation (4), or its equivalent form, equation (6), is the starting point for the field-theoretic
analysis. Its behaviour is determined by the leading terms in the gradient expansion. We can
gain some qualitative insight by considering the linear terms first. To ensure stability of
the homogeneous phase, the coupling constants µ‖ and µ⊥ must be positive, and the cross-
coupling µ× may not exceed −(µ‖µ⊥)1/2. The two couplings τ‖ and τ⊥ play the role of
critical parameters. If both are positive, the nonlinearities become irrelevant, and the problem
reduces to the (Gaussian) Edwards–Wilkinson equation [26]. In contrast, if one or both of
them vanish, the surface develops characteristic spatial structures. These take the form of
ripples (reminiscent of corrugated roofing), if only one of the two couplings goes through
zero; if both couplings become negative, the surface develops mounds or ‘wedding cakes’
[2]. Focusing only on the onset of these instabilities, four different cases emerge which are
discussed systematically in the following section: (o) the linear theory τ‖ > 0, τ⊥ > 0; (i) a
line of continuous transitions τ‖ > 0, τ⊥ → 0; (ii) a line of possibly first-order transitions
τ‖ → 0, τ⊥ > 0; and (iii) the multicritical (critical end-) point τ‖ → 0, τ⊥ → 0. The
qualitative phase diagram is shown in figure 1.

3. Renormalization group analysis

3.1. The dynamic functional

To unify the discussion, we first recast the Langevin equation (6) as a dynamic field theory. In
this formulation, all statistical averages are expressed as path integrals, with weight exp(−J ).
In order to treat correlation and response functions in an analogous manner, it is convenient to
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τ

τ

1

2mcr

wedding cakes longitudinal ripples

EW region

transversal ripples

Figure 1. Sketch of the phase diagram in (τ‖, τ⊥) space. EW denotes the Edwards–Wilkinson
region. The line labelled 1 marks a line of (possibly) discontinuous transitions, and line 2
corresponds to continuous transitions, both to inhomogeneous structures. The dashed lines denote
very qualitative transition lines between different structures, and MCR labels the multicritical
point.

introduce a response field h̃(r, t), and formulate the dynamic response functional, following
standard methods [27–29]:

J [h̃, h] = γ

∫
ddx dt{h̃[γ −1∂th + ∂‖j‖ + ∇⊥j⊥] − h̃2}. (7)

Before we turn to any computational details, we argue that the model is renormalizable.
In other words, in each loop order we need to add only those primitive counterterms which
can be absorbed in a renormalization of the fields and the coupling constants. As a first step
in this procedure, we consider the symmetries exhibited by (7) since they place constraints
on possible counterterms. The invariance against a shift of coordinates in the z-direction
leads to the symmetry h(r, t) → h(r, t) + a. Hence, the surface height h arises in the
functional only in the form of derivatives. Second, the functional is invariant under tilts of
the surface by an infinitesimal ‘angle’ b, i.e., h(r, t) → h(r, t) + b · r provided the tilt is
accompanied by an appropriate change of the parameters, namely, τ‖ → τ ′

‖ = τ‖ − b‖λ‖
and τ⊥ → τ ′

⊥ = τ⊥ − b‖λ⊥. Further, particle conservation on the surface leads to the
invariance transformation h̃(r, t) → h̃(r, t) + c, h(r, t) → h(r, t) + 2cγ t . Therefore, we have
a (d + 2)-dimensional (infinitesimal) symmetry group

h(r, t) → h(r, t) + a + b · r + 2cγ t, h̃(r, t) → h̃(r, t) + c,

which does not change the form of the dynamic functional or the functional integration
measure, provided it is accompanied by an appropriate transformation of the parameters τ‖
and τ⊥. In addition, we have a discrete symmetry, namely, inversion invariance in the (x‖, z)
subspace:

h(x‖, r⊥, t) → −h(−x‖, r⊥, t), h̃(x‖, r⊥, t) → −h̃(−x‖, r⊥, t).

Finally, of course, we have isotropy in the transverse subspace. These symmetries can be
considered as the fundamental defining elements of ideal MBE processes.

The renormalizability of our model can now be argued, following standard methods
[30, 31]. In each loop order, the successive construction of the perturbation series produces
only primitive ultraviolet (UV) divergences, provided that all counterterms constructed in
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lower orders are included to cancel non-primitive divergences which appear in subdiagrams.
If the regularization procedure respects the symmetries of the model, then the remaining
primitive divergences also preserve the symmetries. Thus, these divergences have the same
form as the relevant terms of the initial model and their counterterms can be absorbed in a
renormalization of the initial parameters. This presumes, of course, that all relevant interaction
terms (i.e., composite fields with coupling constants of positive naive dimension) with the
correct symmetries have been included in the initial dynamic functional, and all irrelevant
couplings have been omitted. With regard to our model, a straightforward analysis of the
relevant diagrams shows that we have indeed captured all relevant terms in the original
Langevin equation (4). Hence, the model is renormalizable.

3.2. Elements of perturbation theory: the four different cases

In this section, we assemble the basic components of the perturbative analysis, leaving technical
details to the appendix. We first write the dynamic functional, J [h̃, h] as the sum of two parts.
J0[h̃, h] contains the Gaussian terms of the theory,

J0[h̃, h] = γ

∫
ddx dt

{
h̃
(
γ −1∂t + µ‖∂4

‖ + µ⊥
(∇2

⊥
)2

+ 2µ×∂2
‖∇2

⊥ − τ‖∂2
‖ − τ⊥∇2

⊥
)
h − h̃2

}
,

(8)

while J1[h̃, h] takes the nonlinear interactions into account:

J1[h̃, h] = −γ

∫
ddx dt h̃(∂‖h)

(
λ‖∂2

‖h + λ⊥∇2
⊥h

)
. (9)

Arbitrary correlation and response functions can now be computed as functional averages with
statistical weight J [h̃, h]:

〈◦〉 =
∫

D[h]D[h̃] ◦ e−J [h̃,h].

Due to the anisotropy, it is possible to rescale parallel and transverse lengths independently.
Considering a simple rescaling of parallel lengths first, via x‖ → αx‖, the functional remains
invariant provided h → α−1/2h, h̃ → α−1/2h̃ and µ‖ → α4µ‖, τ‖ → α2τ‖, µ× → α2µ×
while λ‖ → α7/2λ‖ and λ⊥ → α3/2λ⊥. Likewise, if only transverse lengths are rescaled, via
r⊥ → βr⊥, the functional remains invariant provided h → β−(d−1)/2h, h̃ → β−(d−1)/2h̃ and
µ⊥ → β4µ⊥, τ⊥ → β2τ⊥, µ× → β2µ× while λ‖ → β(d−1)/2λ‖ and λ⊥ → β(d+3)/2λ⊥. In
addition, there is an overall length scale κ−1 which accounts for the dimension of fields and
coupling constants under the renormalization group. When we consider the three different
cases below, these scale invariances will allow us to define appropriate effective expansion
parameters, in order to eliminate redundant couplings [32].

Our goal is to compute the Green functions GN,Ñ ({r, t}) = 〈[h]N [h̃]Ñ 〉cum, i.e., the
cumulant averages of all possible products of fields h(r, t), h̃(r, t), or equivalently, the
associated one-particle irreducible (1PI) vertex functions, 
Ñ,N({r, t}), with Ñ (N) h (h̃-)
amputated legs, order by order in a diagrammatic perturbation expansion. The notation
{r, t} is short-hand for the full space and time dependence of these functions. As a first
step in this process, we collect the elements of perturbation theory and introduce their graphic
representation. Using 〈·〉0 to denote averages taken with the (Gaussian) weightJ0, we will need
the bare propagator, G0(q, t)δ(q − q′) ≡ 〈h(q, t)h̃(−q′, 0)〉0, as well as the bare correlator,
C0(q, t)δ(q − q′) ≡ 〈h(q, t)h(−q′, 0)〉0, both in spatial Fourier space. In the following, we
write

∫

q,ω

· · · as short-hand for
∫ ddq

(2π)d

∫
dω
2π

· · ·. Defining


(q) ≡ µ‖q4
‖ + µ⊥

(
q2

⊥
)2

+ 2µ×q2
‖ q2

⊥ + τ‖q2
‖ + τ⊥q2

⊥, (10)
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we find

G0(q, t) = θ(t) exp(−
(q)γ t), C0(q, t) = 
(q)−1G0(q, |t |). (11)

Here the Heaviside function θ(t) is defined with θ(0) = 0. Diagrammatically, these two
functions are represented as lines:

G0(q, t) = t
q

0

C0(q, t) = t
q

0

Turning to the interaction terms, it is convenient to rewrite them in a symmetrized form. In
Fourier space, the expression for the three-point vertex reads

V (q1, q2, q3) ≡ iγ {λ‖q1‖q2‖q3‖ + λ⊥[q1⊥ · (q2‖q3⊥ + q2⊥q3‖) − q1‖q2⊥ · q3⊥]} (12)

with q1 + q2 + q3 = 0. Our sign convention is such that all momenta attached to a vertex are
incoming. Diagrammatically, the whole vertex is represented as

V (q1,q2,q3) =
q1

q 3

q
2

Returning to equations (8) and (9), we now perform dimensional analysis. In the (infrared)
limit of small momenta and frequencies, the Gaussian part of the dynamic functional is
dominated by different terms, depending on the behaviour of the control parameters τ‖
and τ⊥.

Case (o). If both τ‖ and τ⊥ are finite and positive, the theory turns out to be purely Gaussian.
Quartic derivatives can be neglected in the infrared limit; as a result, 
(q) simplifies to

(1)(q) ≡ τ‖q2

‖ + τ⊥q2
⊥. Since both parallel and transverse momenta appear only quadratically

here, it is natural to choose a momentum scale κ such that q‖ ∝ |q⊥| ∝ κ , and τ‖ ∝ τ⊥ ∝ κ0.
Time γ t scales as κ−2, and the fields have dimensions h(r, t) ∝ κ(d−2)/2 and h̃(r, t) ∝ κ(d+2)/2.
The nonlinear couplings scale as λ‖ ∝ λ⊥ ∝ κ−d/2 and are therefore irrelevant in any
dimension d > 0. The resulting theory is a simple anisotropic generalization of the Edwards–
Wilkinson equation [26],

γ −1∂th = τ‖∂2
‖h + τ⊥∇2

⊥h + η. (13)

The anisotropies in the quadratic terms affect only nonuniversal amplitudes and can be removed
by a simple rescaling, without losing any information of interest. As is well known, the two-
point correlation function scales as

C(r, t) = |r|2−dc(t/|r|2) (14)

from which one immediately reads off the (isotropic) roughness exponent χ = (2 − d)/2 and
the dynamic exponent z = 2. For a detailed discussion see [2]. Since this case is so familiar,
we will not consider it any further.

Case (i). If τ‖ remains finite and positive but τ⊥ is infinitesimal, the two leading terms in the

dynamic functional are µ⊥h̃
(∇2

⊥
)2

h and τ‖h̃∂2
‖h. Hence, even in the Gaussian theory, parallel

and transverse momenta already scale differently, reflected in the choice |q⊥| ∝ κ and q‖ ∝ κ2.
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If we introduce an anisotropic scaling exponent � via q‖ ∝ κ1+�, we recognize that � = 1 at
the tree level. Continuing with the two leading terms, we note τ‖ ∝ µ⊥ ∝ κ0, and set µ⊥ = 1
via a transverse rescaling with an appropriate β. Time scales as κ−4, and µ‖ ∝ µ× ∝ κ−2 are
both irrelevant. The only strongly relevant parameter of the theory is τ⊥ ∝ κ2. Introducing the
effective dimension D ≡ d + 1, one finds h(r, t) ∝ κ(D−4)/2 and h̃(r, t) ∝ κ(D+4)/2. For the
nonlinear couplings, we obtain λ⊥ ∝ κ(4−D)/2 and λ‖ ∝ κ−D/2. Since D is clearly positive,
the coupling λ‖ becomes irrelevant. The upper critical dimension dc for the theory is
determined by λ⊥, via 0 = 4−D which leads to dc = 3. The invariant dimensionless effective
expansion parameter is τ

−3/4
‖ λ⊥/κ(3−d)/2 as shown by the rescaling λ⊥ → α3/2λ⊥, τ‖ → α2τ‖.

The resulting propagators are controlled by 
(q) ≡ τ⊥q2
⊥+τ‖q2

‖ +
(
q2

⊥
)2

, where the
(
q2

⊥
)2

-term
determines the UV behaviour and τ⊥ plays the role of the IR cut-off. At the tree level, this
case corresponds to a critical line parameterized by τ‖.

Case (ii). Here, τ⊥ remains finite while τ‖ vanishes. The Gaussian part of the functional is
dominated by h̃∂4

‖h and τ⊥h̃∇2
⊥h. Again, parallel and transverse momenta scale differently,

but their roles are now reversed: q‖ ∝ κ and |q⊥| ∝ κ1+�, with � = 1 at the tree level. Both
µ‖ and τ⊥ scale as κ0, while µ⊥ and µ× are irrelevant. Defining the effective dimension
as D ≡ 2(d − 1) + 1, one still has h(r, t) ∝ κ(D−4)/2 and h̃(r, t) ∝ κ(D+4)/2; we also
recover γ t ∝ κ−4. Now, however, the strongly relevant perturbation is τ‖ ∝ κ2. The two
nonlinearities switch roles so that λ‖ ∝ κ(6−D)/2 and λ⊥ ∝ κ−D/2. Clearly, λ⊥ is irrelevant
in all dimensions while λ‖ becomes marginal at the upper critical dimension dc = 7/2.
The invariant dimensionless effective expansion parameter follows from the rescalings as
µ

−7/8
‖ τ

−(d−1)/4
⊥ λ‖/κ(7−2d)/2. The momentum dependence of the propagators simplifies to


(q) ≡ τ‖q2
‖ +τ⊥q2

⊥ +µ‖q4
‖ . As in the previous case, at the tree level this situation corresponds

to a critical line parameterized by τ⊥. However, we will see below that the order of the transition
may well become first-order once fluctuations are included.

Case (iii). Finally, we consider the multicritical point where both τ⊥ and τ‖ vanish. Both
momenta scale identically, as q‖ ∝ |q⊥| ∝ κ , so that � = 0 at the tree level. Again, we may
set µ⊥ = 1. One obtains γ t ∝ κ−4, τ‖ ∝ τ⊥ ∝ κ2, and h(r, t) ∝ κ(D−4)/2, h̃(r, t) ∝ κ(D+4)/2,
with D = d. The full propagators come into play. Both nonlinear couplings, λ‖ and
λ⊥, have the same upper critical dimension dc = 6. The effective expansion parameters
are w ≡ µ×/

√
µ‖, u‖ ≡ µ

−7/8
‖ λ‖/κ(6−d)/2 and u⊥ ≡ µ

−3/8
‖ λ⊥/κ(6−d)/2. In this case, the

anisotropy exponent � vanishes at the tree level.
In the following, we analyse the three nontrivial cases in a one-loop approximation,

using dimensional regularization combined with minimal subtraction [30, 31]. The essential
components are the 1PI vertex functions 
Ñ,N({q, ω}). Focusing on the ultraviolet
singularities, only those 
Ñ,N with positive engineering dimension are to be considered.
Taking into account the symmetries and the momentum-dependence carried by the derivatives
on the external legs, the set of naively divergent vertex functions is reduced to 
1,1 and 
1,2.
Specifically, at the upper critical dimension of cases (ii) and (iii), 
1,1 is quadratically divergent
and 
1,2 is marginal. In the case (i), 
1,1 is already marginal after accounting for the external
momenta.

3.3. Perturbation theory

In this section, we summarize the calculation of 
1,1 and 
1,2, to one-loop order. Details are
relegated to the appendix.

The main features which recur in all three cases are the following. If 
1,1 is quadratically
divergent, this divergence is first removed by an additive renormalization, i.e., a shift of the
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critical parameter(s). Specifically, the true critical point is located through the singularity of
the parallel and/or transverse static susceptibilities, χ‖ and χ⊥, defined by

γµ‖χ−1
‖ ≡ lim

q‖→0
q−2

‖ 
1,1(q‖, q⊥ = 0, ω = 0),

γ χ−1
⊥ ≡ lim

q⊥→0

(
q2

⊥
)−1


1,1(q‖ = 0, q⊥, ω = 0).
(15)

We find that nontrivial shifts are only required for cases (ii) and (iii), and only for τ‖.
The remaining logarithmic divergences are then computed using dimensional

regularization, so that ultraviolet divergences appear as simple poles in ε ≡ dc − d. In a
minimal subtraction scheme, we focus exclusively on these poles and their amplitudes. Since
the nonlinearities are cubic in the field, the expansion is organized in powers of u2

‖, u
2
⊥ and

u‖u⊥; i.e., the first correction to the tree level is always quadratic for 
1,1 and cubic for 
1,2.
The tilt invariance leads to a Ward identity connecting 
1,1 and 
1,2, namely,

−i
∂

∂q ′
‖

∣∣∣∣∣
q′,ω′=0


1,2(q, ω; q′, ω′) = λ‖
∂
1,1(q, ω)

∂τ‖
+ λ⊥

∂
1,1(q, ω)

∂τ⊥
,

−i
∂

∂q′
⊥

∣∣∣∣
q′,ω′=0


1,2(q, ω; q′, ω′) = 0.

(16)

Here, (q, ω) and (q′, ω′) denote the momenta and frequencies labelled with subscripts 2 and
3 in equation (12). By virtue of this symmetry, it will be sufficient to compute 
1,1 in order to
extract the renormalization of all parameters, including those of the coupling constants λ‖ and
λ⊥. More specifically, the tilt transformation h(r, t) → h(r, t) + b · r, τ‖ → τ‖ − b‖λ‖, τ⊥ →
τ⊥ − b‖λ⊥ shows that the parameter b renormalizes as the field h itself. Hence, the term λ‖h
renormalizes exactly like τ‖, and λ⊥h like τ⊥.

Next, we collect a few general properties of the diagrams contributing to 
1,1(q, ω) which
follow from the special form of the interactions, equation (9). We first consider diagrams
where the external h-leg carries two transverse derivatives. Such diagrams can arise only from
the interaction λ⊥h̃(∂‖h)∇2

⊥h. Thanks to particle conservation, all these graphs sum in such
a way as to generate at least one spatial derivative on the external h̃-leg. Moreover, either
parallel inversion or transverse rotation symmetry guarantees that, in fact, there are at least
two such derivatives. Thus, there are no corrections to the term γ τ⊥h̃∇2

⊥h in J0, equation (8).
Similarly, since external h̃- and h-legs always come with at least one spatial derivative, there
are no perturbative contributions to the terms h̃∂th and γ h̃2. Hence, these three terms are not
renormalized. Further, if the coupling constant λ⊥ is zero, as in case (ii), only diagrams with
parallel derivatives on all legs are generated, and so operators carrying no parallel, or mixed
parallel and transverse, derivatives suffer no renormalization. In contrast, when λ⊥ = 0, there
is no such simplification since this vertex can contribute to purely ‘parallel’ terms. If both
coupling constants λ‖ and λ⊥ are non-zero, they mix under the RG, and we have to renormalize
the couplings by matrices, rather than simple multiplicative factors.

With these considerations in mind, we propose the following renormalization scheme:

h → h̊ = Z1/2h h̃ → ˚̃h = Z−1/2h̃ γ → γ̊ = Zγ

τ⊥ → τ̊⊥ = Z−1τ⊥ τ‖ → τ̊‖ = Z−1
(
Zττ‖ + µ

1/2
‖ Yτ⊥

)
+ τ̊‖,c

µ× → µ̊× = Z−1Z×µ× µ‖ → µ̊‖ = Z−1Zµµ‖

(17)

τ̊‖,c accounts for the shift of the critical point in cases (ii) and (iii). The Ward identities then
lead to the renormalizations

λ⊥ → λ̊⊥ = Z−3/2λ⊥ λ‖ → λ̊‖ = Z−3/2(Zτλ‖ + Yλ⊥). (18)
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The five renormalization factors Z,Zτ , Z×, Zµ and Y must be calculated from the ε-poles of
the dimensionally regularized perturbation series of 
1,1(q, ω). In minimal subtraction, they
are of the form Z◦ = 1 +

∑∞
n=1 Z(n)

◦
/
εn, Y = ∑∞

n=1 Y (n)/εn, where the Z(n)
◦ and Y (n) are

expansions in the renormalized effective coupling constants. Here, the subscript ◦ stands as a
placeholder for any member of the set of indices. The individual characteristics of the three
cases of interest are now treated sequentially.

Case (i): τ⊥ → 0 and τ‖ = 0. This is the simplest nontrivial case. Only one parameter, τ⊥,
needs to be tuned to access criticality. Since λ‖ is irrelevant, it may be set to zero. Neglecting
all other irrelevant terms as well, the functional simplifies to

J = γ

∫
ddx dt

{
h̃
[
γ −1∂t +

(∇2
⊥
)2 − τ‖∂2

‖ − τ⊥∇2
⊥
]
h − h̃2 − λ⊥h̃(∂‖h)∇2

⊥h
}
. (19)

In this case µ‖ = µ× = λ‖ = Y = 0. All divergences are parameterized by ε ≡ dc − d,
where dc = 3.

Following standard methods (for details see appendix A1), we obtain the following
expression for the singular part of the two-point vertex function:


1,1(q, ω) = iω + γ
[
τ‖q2

‖ +
(
q2

⊥
)2

+ τ⊥q2
⊥
]

+ γ
u2

8ε

[
2τ‖q2

‖ − (
q2

⊥
)2]

+ O(u4), (20)

where

u ≡ Aετ
−3/4
‖ λ⊥κ−ε/2 (21)

is the effective expansion parameter. Aε is a geometric factor which appears in all integrals

A2
ε ≡ Sd−1

(2π)d

√
π


(
1 − ε

2

)



(
1 + ε

2

)
,

and Sd is the surface area of the d-dimensional unit sphere.
The renormalized vertex function 
1,1 is defined by demanding that


1,1(q, ω, γ, τ⊥, τ‖, u, κ) ≡ 
̊1,1(q, ω, γ̊ , τ̊⊥, τ̊‖, λ̊⊥)

be pole-free. One finds

Z = 1 +
u2

8ε
+ O(u4), Zτ = 1 − u2

4ε
+ O(u4). (22)

The corresponding Wilson functions are defined as the logarithmic derivatives of the associated
Z-factors, at constant bare quantities, i.e., ζ◦ ≡ κ∂κ ln Z◦|bare. The logarithmic derivatives of
the control parameters and of the relaxation coefficient are then given by

κ∂κ ln τ‖|bare = ζ − ζτ , κ∂κ ln τ⊥|bare = ζ, κ∂κ ln γ |bare = −ζ. (23)

The flow of the dimensionless effective coupling constant u under renormalization is controlled
by the Gell–Mann–Low function,

β ≡ κ∂κu|bare = u

[
−ε

2
+

3

4
(ζ + ζτ )

]
. (24)

The renormalizability of the theory demands that all the Wilson functions be free of ε-poles;
moreover, in minimal subtraction it can be shown [30] that the perturbative corrections do not
contain ε any more. It is easy to demonstrate that all Wilson functions are determined by the
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first term, Z(1)
◦ , in the Laurent expansion of the Z-factors. So, we obtain

ζ(u) = −u

2

∂Z(1)

∂u
= −u2

8
+ O(u4),

ζτ (u) = −u

2

∂Z(1)
τ

∂u
= u2

4
+ O(u4), (25)

β(u) = u

[
−ε

2
+

3

32
u2 + O(u4)

]
.

The renormalization group equation (RGE) for the Green functions simply states that the
bare theory is independent of the external momentum scale κ:

0 = κ
d

dκ
G̊N,Ñ ({r, t}; τ̊⊥, τ̊‖, γ̊ , λ̊⊥)

= κ
d

dκ
Z(N−Ñ)/2GN,Ñ ({r, ω}; τ⊥, τ‖; u, γ, κ). (26)

Explicitly, this partial differential equation becomes[
κ

∂

∂κ
+ β

∂

∂u
− ζγ

∂

∂γ
+ ζ τ⊥

∂

∂τ⊥
+ (ζ − ζτ )τ‖

∂

∂τ‖
+

ζ

2
(N − Ñ)

]
GN,Ñ = 0. (27)

It will lead to asymptotic scaling, provided β(u) possesses an infrared stable fixed point u∗,
i.e., a solution of β(u∗) = 0 with β ′(u∗) > 0. To the one-loop order, equation (25) allows for
a single fixed point with the desired properties, namely,

u∗ = ±4

√
ε

3
(1 + O(ε)), (28)

where the sign is determined by the sign of the initial coupling constant λ⊥. Clearly, this u∗

is non-zero in the ε-expansion. Under the (reasonable) assumption that the full (resummed)
series for u∗(ε) is non-zero at the integer values of ε corresponding to physical dimensions,
equation (24) gives us the exact relation

ζ(u∗) + ζτ (u
∗) = 2ε

3
. (29)

In the following, Wilson ζ -functions, evaluated at the fixed point, will simply be denoted by
a superscript ∗.

The solution of the RGE (27) is easily found by applying the method of characteristics.
At the stable fixed point u∗, we obtain the scaling solution

GN,Ñ ({r, t}; τ⊥, τ‖, γ, κ) = lζ
∗(N−Ñ)/2GN,Ñ

({r, t}; lζ
∗
τ⊥, lζ

∗−ζ ∗
τ τ‖, l−ζ ∗

γ, lκ
)
,

where l is an arbitrary flow parameter. The parallel and transverse scale invariances, together
with dimensional analysis, give us an additional scaling relation for the Green functions,
namely,

GN,Ñ ({r, t}; τ⊥, τ‖, u⊥, γ, κ) = α(N+Ñ)/2κN(D−4)/2+Ñ(D+4)/2

×GN,Ñ ({ακ2x‖, κr⊥, γ κ4t}; τ⊥/κ2, α2τ‖, u⊥; 1, 1).

Combining these two relations, choosing α = l(ζ
∗
τ −ζ ∗)/2 and recalling D = d + 1, we arrive

at the final scaling form for the Green functions. Suppressing unneeded arguments, we can
choose to write them in the form

GN,Ñ ({r, t}; τ⊥) = lδN,Ñ GN,Ñ ({l1+�x‖, lr⊥, lzt}; l−1/ντ⊥), (30)
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where the scaling exponents � and η can be expressed in terms of Wilson functions, evaluated
at the fixed point:

� = 1 +
ζ ∗
τ − ζ ∗

2
, η = ζ ∗. (31)

Since we have only two independent renormalizations, the remaining exponents follow from
scaling laws, namely,

z = 4 − η, 1/ν = 2 − η, (32)

and

δN,Ñ = N

2
(d + � − 4 + η) +

Ñ

2
(d + � + 4 − η). (33)

Equation (29), provided it holds, can be exploited to give another exponent identity:

� + η = 2 − d/3. (34)

To conclude, only a single exponent, e.g., η has to be computed order by order in perturbation
theory. Then, all others follow from exponent identities which are exact, at least within
perturbation theory. Our one-loop calculation results in

η = −2ε/3 + O(ε2). (35)

Case (ii): τ‖ → 0 and τ⊥ = 0. This is the second nontrivial case. Neglecting irrelevant terms,
the dynamic response functional simplifies to

J [h̃, h] = γ

∫
ddx dt

{
h̃
[
γ −1∂t + µ‖∂4

‖ − τ‖∂2
‖ − τ⊥∇2

⊥
]
h − h̃2 − λ‖h̃(∂‖h)∂2

‖h
}

(36)

In this case, we define ε ≡ dc − d with dc = 7/2.
Since 
1,1(q, ω) is quadratically divergent in this case, an additive renormalization of the

critical parameter, τ‖, is required (see appendix A2). Once this is accounted for, we obtain the
following one-loop expression for the singular part of 
1,1:


1,1(q, ω)pole = iω + γ
(
µ‖q4

‖ + τ‖q2
‖ + τ⊥q2

⊥
)

+ γ
u2

2ε

(
µ‖q4

‖ + τ‖q2
‖
)

+ · · · , (37)

where u is the effective expansion parameter now defined as

u ≡ Bεµ
−7/8
‖ τ

−(d−1)/4
⊥ λ‖κ−(7−2d)/2 (38)

with a geometric factor

B2
ε ≡ Sd−1

2(2π)d



(
d − 1

2

)



(
d

2

)

(1 + ε).

Equation (37) gives rise to renormalizations of µ‖ and τ‖. Since the vertex λ‖ carries only
parallel momenta in this case, there are no contributions of order q2

⊥ at any order, implying
the absence of field renormalizations. Hence, Z = 1. The remaining poles are absorbed into
the renormalization factors

Zµ = 1 − u2

2ε
+ O(u4), Zτ = 1 − u2

2ε
+ O(u4). (39)

Defining the Gell–Mann–Low function of u, as well as the Wilson functions, in analogy to the
previous case, we obtain

ζµ = κ∂κ ln Zµ|bare = u2 + O(u4),

ζτ = κ∂κ ln Zτ |bare = u2 + O(u4), (40)

β ≡ l∂lu‖|bare = u

[
−ε +

7

8
ζµ − ζτ

]
= u

[
−ε − 1

8
u2 + O(u4)

]
.
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The fixed point equation β(u∗) = 0 does not yield a stable real fixed point, at least to
this order in perturbation theory. It remains an open question whether such a fixed point,
and the associated scaling properties, might emerge at higher orders. Restricting ourselves
to our current results, the absence of an infrared stable fixed point might suggest a first-
order transition. A more detailed analysis of the underlying mean-field theory or a careful
computational study would be required to shed more light on this issue. Both are beyond the
scope of this paper.

Case (iii): τ‖ → 0 and τ⊥ → 0. Finally, we turn to the analysis of the multicritical point. This
situation was previously considered in [17], using a momentum shell decimation scheme. This
procedure requires considerable care for field theories with strong anisotropy and nonlinearities
carrying multiple derivatives, since the corrections depend on the way in which the hard
momentum cut-off is implemented. Moreover, the hard momentum shell cut-off introduces
long-ranged correlations on the scale of the cut-off momentum which must be handled very
carefully. Whatever the source of the discrepancies, even after meticulous checks we were
unable to reproduce the earlier results.

The full functional, equations (8) and (9), as well as the full (bare) propagators and
correlators, equation (11), now come into play. To ensure the stability of the critical theory
at the tree level, we demand µ‖q4

‖ + 2µ×q2
‖ q2

⊥ +
(
q2

⊥
)2 � 0. This limits the physical range

of µ‖ and µ× to µ‖ > 0 and µ× > −√
µ‖. To complicate matters further, both nonlinear

couplings, λ‖ and λ⊥, are marginal at the upper critical dimension dc = 6. However we know
that, thanks to the Ward identity, all renormalizations can still be obtained from the two-point
function, 
1,1.

A first analysis of diagrams contributing to 
1,1(q, ω) shows that two of them are
quadratically divergent. Since both of them carry a momentum prefactor of q2

‖ , they can
be absorbed in an additive renormalization, i.e., a shift of the bare control parameter τ̊‖, as
remarked before. No shift of the bare τ̊⊥ is needed.

Leaving details to appendix A3, our one-loop result for 
1,1 is now considerably more
complex, thanks to the presence of both vertices. In order to eliminate redundant parameters,
it is again convenient to define invariant dimensionless coupling constants, guided by the
parallel and transverse rescalings:

u‖ ≡ Cεµ
−7/8
‖ (1 + w)−5/4λ‖κ−(6−d)/2, w ≡ µ×

µ
1/2
‖

,

u⊥ ≡ Cεµ
−3/8
‖ (1 + w)−5/4λ⊥κ−(6−d)/2,

(41)

where the constant Cε is defined by

C2
ε ≡ Sd−1

(2π)d

π
(1 + ε/2)

32
√

2
.

The definition of the effective coupling constants contains a suitable w-dependent denominator,
which is common to all integrals. Collecting the results from appendix A3, we find the singular
parts


1,1(q, ω)pole = iω + γ
[
q2

‖
(
µ‖q2

‖ + τ‖
)

+ q2
⊥
(
q2

⊥ + τ⊥
)

+ 2µ×q2
‖ q2

⊥
]

− γµ
1/2
‖ q2

‖

[
u2

‖

(
B1

ε
µ

−1/2
‖ τ‖ +

B1

ε
τ⊥

)
+ u2

⊥

(
B2

ε
µ

−1/2
‖ τ‖ +

B3

ε
τ⊥

)]
− γµ‖q4

‖

[
u2

‖
C1

ε
+ u2

⊥
C2

ε

]
− γ

(
q2

⊥
)2

u2
⊥

A1

ε

− γµ
1/2
‖ q2

‖ q2
⊥

[
u2

‖
D1

ε
+ u2

⊥
D2

ε
+ u‖u⊥

D3

ε

]
. (42)
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Here, A1, B1, . . . , D3 are w-dependent functions whose explicit forms are listed in
appendix A3.

According to the general renormalization scheme, equation (17), the full set of five
renormalization factors now comes into play. At the one-loop order, we read off

Z = 1 + A1
u2

⊥
ε

+ O(u4),

Zτ = 1 + B1

u2
‖
ε

+ B2
u2

⊥
ε

+ O(u4),

Y = B1

u2
‖
ε

+ B3
u2

⊥
ε

+ O(u4), (43)

Zµ = 1 + C1

u2
‖
ε

+ C2
u2

⊥
ε

+ O(u4),

Z× = 1 + D1

u2
‖

2wε
+ D2

u2
⊥

2wε
+ D3

u‖u⊥
2wε

+ O(u4).

Here, O(u4) is short-hand for the two-loop corrections which are of fourth order in the
couplings u‖ and u⊥. Defining ζ◦ ≡ κ∂κ ln Z◦|bare = − 1

2 (u‖∂u‖ + u⊥∂u⊥)Z(1)
◦ , ζy =

− 1
2 (u‖∂u‖ + u⊥∂u⊥)Y (1) as before, one obtains to the one-loop order

ζ = −2(1 + w)u2
⊥, ζτ = 3u2

‖ − (5 + 2w)u2
⊥,

ζy = 3u2
‖ − 3(7 + 10w + 4w2)u2

⊥,

ζµ = (3 + w)u2
‖ − (5 + 9w + 10w2 + 4w3)u2

⊥,

ζ× = (7 + 5w)

10w
u2

‖ − (49 + 65w + 26w2)

10w
u2

⊥ − (10 + 2w)

10w
u‖u⊥.

(44)

We now consider the Gell–Mann–Low functions for the three dimensionless effective
couplings u‖, u⊥ and w:

β‖ ≡ κ∂κu‖|bare =
(

−ε

2
+

5

8
ζ − ζτ +

7

8
ζµ − 5βw

4(1 + w)

)
u‖ − ζyu⊥,

β⊥ ≡ κ∂κu⊥|bare =
(

−ε

2
+

9

8
ζ +

3

8
ζµ − 5βw

4(1 + w)

)
u⊥, (45)

βw ≡ κ∂κw|bare =
(

1

2
ζ − ζ× +

1

2
ζµ

)
w.

We seek a set of fixed points (w∗, u∗
‖, u

∗
⊥) such that all three β-functions vanish simultaneously.

The eigenvalues of the linearized system, evaluated in the vicinity of each fixed point, provide
information about its stability. If all of them are positive, the fixed point is infrared stable;
otherwise, it is unstable in one or more directions.

There is only one nontrivial, physical (i.e., real) infrared stable fixed point given by

w∗ = 2

√
3

5
− 1 + O(ε), u∗

‖ = ±
√

7
√

15 + 25

11
ε1/2 + O(ε3/2), u∗

⊥ = 0. (46)

For u∗
⊥ = 0, we find another root w∗ = −1 − 2

5

√
15 < −1, but this solution must be excluded

since it leads to a linearly unstable theory (see the discussion after equation (6)). There
are numerous fixed points with u∗

⊥ = 0 and u∗
‖ = 0, but these are all infrared unstable or

nonphysical, in the sense that either u∗
‖ or u∗

⊥ are imaginary or w∗ < −1. In contrast to earlier
results by [17], we do not find a physically viable fixed point with u∗

⊥ = 0. We have also



Novel surface universality classes with strong anisotropy 8197

carefully considered the possibility of ‘degenerate fixed points’ with w∗ = 0 or w∗ = ∞;
none of these are stable.

Returning briefly to equation (42), we note that the critical parameter τ‖ appears only in
the combination τ̃‖ ≡ µ

−1/2
‖ τ‖, which is actually the appropriate scale-invariant form. This

suggests a slight modification of the general renormalization scheme, equation (17), so that
the renormalizations of the critical control parameters are now written as

˚̃τ ‖ = Z−1/2Z−1/2
µ (Zτ τ̃‖ + Yτ⊥), τ̊⊥ = Z−1τ⊥. (47)

Their derivatives can be expressed in terms of the ζ -functions of equation (44):

κ∂κ τ̃‖|bare =
(

ζ

2
+

ζµ

2
− ζτ

)
τ̃‖ − ζyτ⊥, κ∂κτ⊥|bare = ζ τ⊥. (48)

One can see quite easily that u∗
⊥ = 0 is an invariant subspace of the RG, since the coupling

u‖ alone cannot generate any corrections to u∗
⊥. Assuming that the stable fixed point, at higher

orders of perturbation theory, remains characterized by w∗ = 0, u∗
‖ = 0, while u∗

⊥ = 0, we
can establish the (exact) relations

ζ ∗ = 0, 7
4ζ ∗

µ − 2ζ ∗
τ = ε, ζ ∗

× = 1
2ζ ∗

µ (49)

which will lead to exponent identities, as we shall presently see. At the fixed point, the RGE
takes the simplified form[

κ
∂

∂κ
− ζ ∗

µ

∂

∂µ‖
+

((
1

2
ζ ∗
µ − ζ ∗

τ

)
τ̃‖ − ζ ∗

y τ⊥

)
∂

∂τ̃‖

]
GN,Ñ = 0. (50)

The two critical control parameters (τ̃‖, τ⊥) are diagonalized by introducing the new
independent variables (σ‖, τ⊥), defined by

σ‖ = τ̃‖ +
2ζ ∗

y

2ζ ∗
τ − ζ ∗

µ

τ⊥. (51)

This new critical control parameter σ‖ takes over the role of τ‖ in the mean-field approximation.
The solution of the RGE (50) is given by

GN,Ñ ({r, t}; τ‖, τ⊥;µ‖, w∗; u∗
‖, u

∗
⊥; γ, κ) = FN,Ñ

({r, t}; lζ
∗
µ/2−ζ ∗

τ σ‖, τ⊥; l−ζ ∗
µµ‖; γ, lκ

)
, (52)

where l is an arbitrary scale, and FN,Ñ results from GN,Ñ after the variable transformation to
(σ‖, τ⊥). Combining this equation with the simple parallel and transverse scale invariances,
we arrive at the scaling form

GN,Ñ ({r, t}; τ‖, τ⊥) = lδN,Ñ FN,Ñ ({l1+�x‖, lr⊥, lzt}; l−1/ν‖σ‖, l−1/ν⊥τ⊥), (53)

where δN,Ñ is again given by equation (33), while the other exponents take the values

� = ζ ∗
µ

4
, η = ζ ∗ = 0, z = 4 − η = 4,

1/ν‖ = 2 − ζ ∗
µ

2
+ ζ ∗

τ , 1/ν⊥ = 2.

(54)

The result to all orders, equation (49), leads to an exact relation between � and ν‖:

ν‖ = 2

d − 2 + 3�
. (55)

Once again, only a single exponent must be computed explicitly within the ε-expansion, e.g.,
�. Our one-loop calculation yields

� = 23 + 6
√

15

11
ε + O(ε2), (56)
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and for the mixing of the critical control parameters

σ‖ = τ‖√
µ‖

+

(
17

3(10 +
√

15)
+ O(ε)

)
τ⊥. (57)

Let us briefly return to the assumption that the stable fixed point is characterized by
u∗

⊥ = 0. Thanks to equation (45) and the associated linear stability matrix, we can determine
the stability criterion, i.e., the correction-to-scaling exponent of u⊥, to all orders in perturbation
theory. The condition for u∗

⊥ = 0 to be stable is 4ε < 3ζ ∗
µ which generates bounds for the

critical exponents � and ν‖, namely,

ν‖ <
1

2
, � >

6 − d

3
. (58)

If the stability condition 4ε < 3ζ ∗
µ or equivalently, the second bound of equation (58) is

violated at some dimension d, the fixed point structure of the theory changes fundamentally.
Now u∗

⊥ = 0 is stable, and equation (45) gives us the (exact) relations

4ε − 3ζ ∗
µ = 9ζ ∗ > 0, ζ ∗

× = 1
2 (ζ ∗ + ζ ∗

µ) (59)

instead of equations (49). We lose one condition, and this leads to two independent critical
exponents, as opposed to a single one. Following the same analysis as before, we arrive at the
relations

� = 6 − d

3
− η, η > 0, 1/ν⊥ = 2 − η. (60)

The scaling behaviour of the Green functions still follows equation (53), but ν‖ can no longer
be related to �.

4. The roughness exponents

The roughness exponents of the surface are easily identified, once the scaling properties of the
underlying field theory are known. For isotropic theories, they can be read off directly from
the height–height correlation function,

G2,0(r − r′, t − t ′) ≡ C(r − r′, t − t ′) ≡ 〈h(r, t)h(r′, t ′)〉
if its asymptotic scaling behaviour can be written in the form of

C(r, t) = |r|2χc(t/|r|z). (61)

Here, χ denotes the roughness exponent and z is the dynamic exponent of the surface, while
c is a universal scaling function. Similarly, in the Fourier space, the behaviour of C(r, t)
translates into

C̃(q, t) = |q|−(d+2χ)c̃(t |q|z) (62)

with the same roughness exponent χ . In our case, the situation is slightly more subtle [33], due
to the presence of strong anisotropy [34]. First of all, surface fluctuations along the parallel
and the transverse directions in real space need not be controlled by the same indices, leading
us to define two exponents, χ⊥ and χ‖, via

C(x‖ = 0, r⊥; t) ≡ |r⊥|2χ⊥c⊥(t/|r⊥|z) C(x‖, r⊥ = 0; t) ≡ |x‖|2χ‖c‖
(
t
/
x

z/(1+�)

‖
)
. (63)

A similar situation should be expected in Fourier space, prompting us to define two additional
exponents, χ̃⊥ and χ̃‖, via

C̃(0, q⊥, t) ≡ |q⊥|−(d+2χ̃⊥)c̃⊥(t |q⊥|z) C̃(q‖, 0, t) ≡ q
−(d+2χ̃‖)
‖ c̃‖

(
tq

z/(1+�)

‖
)
. (64)
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Of course, all of these expressions are only meaningful if the four scaling functions c⊥, c‖ , c̃⊥
and c̃‖ approach finite and non-zero constants when their arguments vanish. Generically, the
four roughness exponents take different numerical values; however, they can all be expressed
in terms of the exponents � and η, according to the identities

χ⊥ = 1

2
[4 − (d + �) − η], χ‖ = 1

2
[4 − (d + �) − η]/(1 + �)

χ̃⊥ = 1

2
[4 − d − η], χ̃‖ = 1

2
[4 − η]/(1 + �) − d

2
.

(65)

The key observation is that χ̃⊥ = χ̃‖ = χ⊥ = χ‖ only if the anisotropy exponent � vanishes.
In the following, we explicitly compute the roughness exponents for the two cases (i) and

(iii). For case (ii), the renormalization group gives us no such information, since that would
require the existence of an infrared stable fixed point. If, in fact, the presence of a first-order
transition line were to be confirmed eventually, the whole concept of scaling exponents would
be inapplicable here.

Case (i): For this theory, characterized by positive τ‖ while τ⊥ vanishes, we found that all
exponents could be expressed in terms of η = − 2

3ε + O(ε2). Writing all four roughness
exponents in terms of this single index, we arrive at expressions which are exact to all orders
in ε = 3 − d:

χ⊥ = 1 − d/3, χ‖ = 1 − d/3

3 − d/3 − η
,

χ̃⊥ = (4 − d − η)/2, χ̃‖ = 4 − η

2(3 − d/3 − η)
− d

2
.

(66)

The mean-field values are easily recovered by setting ε = 0. The physically most interesting
case corresponds to a surface grown on a two-dimensional substrate, i.e., d = 2 and ε = 1.
For this situation, one obtains χ⊥ = 1/3 and χ‖ = 1/9 + O(ε2), while χ̃‖ = −2/9 + O(ε2)

and χ̃⊥ = 4/3 + O(ε2). Remarkably, the exponent χ⊥ = 1/3 is actually exact, at least to all
orders in perturbation theory.

Case (iii): At the multicritical point one has η = 0, z = 4, and a nontrivial �. Hence, one
obtains

χ⊥ = [4 − (d + �)]/2, χ‖ = 4 − (d + �)

2(1 + �)

χ̃⊥ = [4 − d]/2, χ̃‖ = 2

(1 + �)
− d

2
.

(67)

All of them are negative near the upper critical dimension dc = 6. In order to access the
physical (d = 2) situation, one has to set ε = 4 here which gives a huge anisotropy exponent,
� � 16.814, if one naively uses the one-loop results. While roughness exponents can in
principle be calculated, it does not appear meaningful to compare them to experimental data.
Yet, we emphasize again that the exponents calculated here do not agree with [17].

5. Conclusions

To summarize, we have analysed the effect of strong anisotropies on the universal behaviour
of a surface grown under ideal MBE-type conditions. The anisotropy is generated by an
incident particle beam which is tilted away from the normal. This arrangement manifestly
breaks rotational invariance in the substrate plane. As a consequence, the effective surface
tension becomes anisotropic, being characterized by two parameters, τ‖ and τ⊥, as opposed
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to a single one in the isotropic case. If both are positive, the surface is described by the
Edwards–Wilkinson model. However, as temperature or other growth parameters are varied,
the two control parameters need not vanish simultaneously, leading to different dynamic and
spatial instabilities and ordered structures. Clearly, there are three distinct scenarios: (i) τ‖ > 0
while τ⊥ goes to zero, (ii) τ‖ → 0 while τ⊥ remains positive and (iii) both parameters vanish.
Each of these three cases is described by its own characteristic field theory with distinct upper
critical dimensions: dc = 3, 7/2 and 6 for cases (i), (ii) and (iii), respectively. To display scale-
invariant behaviour in the long-time, large-distance limit, a field theory must possess one, or
more, infrared stable fixed points. Our one-loop analysis reveals that only cases (i) and (iii)
have this property. In contrast, case (ii) may correspond to a line of first-order phase transition
whose characteristics lie outside the scope of our RG techniques. For the two scale-invariant
theories, we find two distinct, novel surface universality classes, and derive the associated
scaling behaviour of the height–height correlation function. An intriguing feature of both
universality classes is the emergence of a strong anisotropy exponent, which reflects different
scaling behaviour in the parallel and transverse directions. As an immediate consequence, we
need to introduce four different roughness exponents, to characterize surface fluctuations in
real and momentum space, observed along the parallel versus the transverse directions. While
all four are related by exponent identities, care must nevertheless be exercised when analysing
experimental data.

We conclude with a few comments on the phase diagram. The first case clearly
corresponds to a second-order line, parameterized by τ‖. Assuming that the first-order nature
of the second case, parameterized by τ⊥, can be confirmed, the third case τ‖ = τ⊥ = 0 would
turn out to be a critical endpoint. Since it requires the tuning of two parameters, it may be quite
difficult to access in a typical experiment. In contrast, either the second- or the first-order lines
should be more easily observable. From an RG perspective, even if the τ‖∂2

‖h term is absent
initially, it is immediately generated under RG transformations, leading to a non-zero critical
value of τ‖; this is not the case for the τ⊥∇2

⊥h contribution. For this reason, we believe that the
most physically relevant theory (beyond the Edwards–Wilkinson behaviour) is the one with
τ‖ > 0 and τ⊥ = 0. Our key results for this model are the roughness exponents for real-space
surface scans. For a two-dimensional surface embedded in a three-dimensional space, we find
χ⊥ = 1/3 for scans along the transverse direction, and χ‖ = 1/9 + O(ε2) for parallel scans.
There appears to be some experimental evidence for these exponents [33], but more data are
needed before this issue can be settled.
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Appendix

In the following, some technical details of the above calculations are presented. We prefer
the time–momentum representation of the propagators and correlators, since it displays the
causal structure of the Feynman diagrams most directly. In this representation, each 
1,1- (or
self energy) diagram has a single h̃-leg at the outgoing vertex with the largest time argument,
and a single h-leg at the incoming vertex with the smallest time argument. To find the UV
divergent ω = 0 contribution, we just integrate over the time difference of these two vertices.
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A.1. Case (i): τ⊥ → 0 and τ‖ = 0

To characterize the theory fully, it suffices to calculate the vertex function 
1,1. The only
one-loop diagram which must be evaluated is


1,1(q, ω) = G0(−q,−ω)−1 − + · · · (A.1)

using the diagrammatic building blocks associated with equations (11) and (12). This graph
represents the one-loop contribution to the self-energy. After integrating over the time
difference of the two vertices, it takes the form

= −γ λ2
⊥

∫
ddp

(2π)d

[−(
q2

⊥
)2

p2
‖ + 2q2

⊥(q⊥ · p⊥)p2
‖ + q2

‖
(
p2

⊥
)2]


(p)[
(p) + 
(q − p)].
(A.2)

Several finite terms have been dropped, following a dimensional regularization and minimal
subtraction scheme. The function 
(p) contains, up to a factor γ , the full momentum
dependence of the inverse propagator


(p) = p2
⊥
(
p2

⊥ + τ⊥
)

+ p2
‖τ‖. (A.3)

Dimensional analysis immediately suggests that the terms in the bracket of equation (A.2)
diverge logarithmically, except possibly the term 2q2

⊥(q⊥ · p⊥)p2
‖ , which is, at least naively,

linearly divergent. The denominator in equation (A.2) is now expanded in small external
momenta, and multiplied with the numerator, keeping only divergent contributions. After
some straightforward algebra, we arrive at

(A.2) = −γ λ2
⊥

[
−1

2

(
q2

⊥
)2

I (2, 0, 2) +
1

2
q2

‖I (0, 4, 2) +
2

d − 1

(
q2

⊥
)2

I (2, 4, 3)

]
. (A.4)

The integrals I (α, β, γ ) are defined as

I (α, β, γ ) ≡
∫

ddp

(2π)d

pα
‖
(
p2

⊥
)β/2


(p)γ
∝ �d+1+2α+β−4γ (A.5)

with the proportionality indicating the degree of divergence based on simple power counting
in d = dc = 3. Clearly, all integrals appearing in equation (A.4) are only logarithmically
divergent; the (naive) linear divergence vanishes by symmetry. Using the effective coupling u
introduced in equation (21), the integrals are

λ2
⊥I (2, 0, 2) = u2

2ε
, λ2

⊥I (0, 4, 2) = u2

2ε
τ‖, λ2

⊥I (2, 4, 3) = u2

8ε
, (A.6)

and one finally arrives at equation (20).

A.2. Case (ii): τ‖ → 0 and τ⊥ = 0

The diagrammatic representation of 
1,1, to one-loop, is again given by equation (A.1).
However, the relevant interaction vertex here is λ‖, so that the one-loop integral reads

γ λ2
‖q

2
‖

∫
ddp

(2π)d
p2

‖(q‖ − p‖)2 1


(p)[
(p) + 
(q − p)]
(A.7)

and the momentum dependence of the inverse bare propagator is controlled by


(p) = p2
‖
(
µ‖p2

‖ + τ‖
)

+ τ⊥p2
⊥. (A.8)

As in the previous section, the integral (A.7) cannot be performed in closed form. Again, we
expand the denominator of equation (A.7) in powers of q‖ and q⊥, noting that higher orders
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become more and more convergent. Keeping only divergent terms, the singular part of 
1,1

takes the form


1,1 = iω + γ
[
q2

‖
(
µ‖q2

‖ + τ‖
)

+ τ⊥q2
⊥
] − γ λ2

‖q
2
‖

∫
ddp

(2π)d

p4
‖

2
(p)2

− γ λ2
‖q

4
‖

∫
ddp

(2π)d

{
p2

‖
2
(p)2

− 7µ‖p6
‖

2
(p)3
+

4µ2
‖p

10
‖

2
(p)4
+ · · ·

}
+ O

(
λ4

‖
)
. (A.9)

The leading singularity, i.e., the first integral above, is found to be quadratically divergent.
It contributes to the renormalization of τ‖ and can therefore be controlled by an additive
renormalization. We shift the critical parameter by an amount τ̊‖,c, defined through the
vanishing of the parallel susceptibility, equation (15). Evaluating χ‖ to first-order yields

χ−1
‖ = τ‖ − λ2

‖

∫
ddp

(2π)d

p4
‖

2
2(p)
+ O

(
λ4

‖
)
. (A.10)

The general renormalization scheme, equation (17), then allows us to determine

τ̊‖,c = λ2
‖

∫
ddp

(2π)d

p4
‖

2
2(p)

∣∣∣∣∣
τ‖=0

+ O
(
λ4

‖
)

(A.11)

in one loop. Reparameterizing 
1,1 in terms of the shifted τ‖ subsequently removes the
quadratic divergence and leaves us with logarithmic divergences only. Hence, the vertex
function reads, to first order,


1,1 = iω + γ
(
q2

‖
(
µ‖q2

‖ + τ‖
)

+ τ⊥q2
⊥
)

+ γ λ2
‖q

2
‖τ‖J (6, 3)

− 1
2γ λ2

‖q
4
‖
[
J (2, 2) − 7µ‖J (6, 3) + 4µ2

‖J (10, 4) + · · · ]
with the integrals J (α, γ ) defined by

J (α, γ ) ≡
∫

ddp

(2π)d

pα
‖


(p)γ
∝ �2d−1+α−4γ . (A.12)

Again, the proportionality indicates the degree of divergence based on d = dc = 7/2. Using
the effective coupling u introduced in equation (38), the integrals can be evaluated:

λ2
‖J (2, 0, 2) = µ‖

4u2

3ε
, λ2

‖J (6, 0, 3) = u2

2ε
, λ2

‖J (10, 0, 4) = µ−1
‖

7u2

24ε
, (A.13)

which finally results in equation (37).

A.3. Case (iii): τ‖ → 0 and τ⊥ → 0

The calculation of the self-energy follows the same standard methods as above. However, the
technical details become more involved, for two reasons. First, the full momentum dependence
of the inverse propagator,


(p) = p2
⊥
(
p2

⊥ + τ⊥
)

+ 2p2
⊥p2

‖µ× + p2
‖
(
µ‖p2

‖ + τ‖
)

(A.14)

comes into play, with the two critical parameters, τ⊥ and τ‖, serving as infrared cut-offs.
Second, both nonlinearities, parameterized by λ‖ and λ⊥, are now marginal at the upper
critical dimension dc = 6.

As before, we start with the diagrammatic representation, equation (A.1). Due to the
presence of the full vertex, equation (12), the one-loop integral is given by

−γ

∫
ddp

(2π)d

V ({q, p})

(p)[
(p) + 
(q − p)]

,
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where V ({q, p}) summarizes the momenta contributed by the vertices:

V ({q, p}) ≡ −λ2
‖q

2
‖p

2
‖(q‖ − p‖)2 + λ2

⊥
{[

2(q⊥ · p⊥)p‖ − q2
⊥p‖ − q‖p2

⊥
][

q2
⊥p‖ − q‖p2

⊥
]}

+ λ‖λ⊥q‖(q‖ − p‖)p‖
[
2(q⊥ · p⊥)p‖ − 2q2

⊥p‖
]
.

As for case (ii), a shift of the critical parameter τ‖ absorbs a quadratic divergence in 
1,1.
Demanding that the inverse (parallel) susceptibility, equation (15), vanishes at the true critical
point, one finds in the one-loop order

τ̊‖,c = λ2
‖

∫
ddp

(2π)d

p4
‖

2
(p)2

∣∣∣∣∣
τ‖=τ⊥=0

− λ2
⊥

∫
ddp

(2π)d

(
p2

⊥
)2

2
(p)2

∣∣∣∣∣
τ‖=τ⊥=0.

(A.15)

Again, we retain only logarithmic divergences in 
1,1 if we reparameterize it in terms of a
shifted τ‖ → τ‖ − τ̊‖,c. Expanding the denominator to O(q2) results in a sum of integrals of
the form

I (α, β, γ ) ≡
∫

ddp

(2π)d

pα
‖
(
p2

⊥
)β/2


(p)γ
∝ �d+α+β−4γ . (A.16)

Formally, these look like equation (A.5), but it is essential to realize that 
(p) takes the more
complicated form (A.14). To evaluate the I (α, β, γ ), it is convenient to introduce a new
integration variable, x ≡ q‖/|q⊥|, to replace q‖. This has the significant advantage that all
ε-poles are already explicitly displayed, once the q⊥-integration has been performed. The
remaining integrals over x can be evaluated at ε = 0 and are perfectly straightforward. They
take the form

Kn,σ (w) =
∫ ∞

−∞
dx

x2σ

(1 + 2wx2 + x4)
(A.17)

with (n, σ ) ∈ {(1, 0), (2, 0), (3, 0), (4, 0), (2, 1), (3, 1), (4, 1)}. Clearly, these Ks lead to
w-dependent coefficients for the different contributions to 
1,1. The result is summarized in
equation (42) with the w-dependent functions

A1 = 2(1 + w),

B1 = −3, B2 = (5 + 2w), B3 = 3(7 + 2w(5 + 2w)),

C1 = −(3 + w), C2 = (5 + 9w + 10w2 + 4w3),

D1 = − 1
5 (7 + 5w), D2 = 1

5 (49 + 65w + 26w2), D3 = 1
5 (10 + 2w).

(A.18)

Tallying up all the contributions to 
1,1, and removing the divergences by renormalization,
one arrives at the Z-factors listed in equation (43).
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[13] Täuber U C and Frey E 2002 Europhys. Lett. 59 655
[14] Lagally M (ed) 1990 Kinetics of Ordering and Growth at Surfaces (New York: Plenum)
[15] Das Sarma S 1996 Comput. Math. Sci. 6 149
[16] Krug J 2002 Physica A 313 47
[17] Marsili M, Maritan A, Toigo F and Banavar J R 1996 Europhys. Lett. 35 171
[18] Wolf D E and Villain J 1990 Europhys. Lett. 13 389

Lai Z-W and Das Sarma S 1991 Phys. Rev. Lett. 66 2348
[19] Villain J 1991 J. Physique I 1 19
[20] Janssen H K 1996 Phys. Rev. Lett. 78 1082
[21] Leamy H J, Gilmer G H and Dirks A G 1980 Current Topics in Materials Science vol 6, ed E Kaldis (Amsterdam:

North-Holland)
Mazor A D, Srolovitz J, Hagan P S and Bukiet B G 1988 Phys. Rev. Lett. 60 424
Marsili M, Maritan A, Toigo F and Banavar J R 1996 Rev. Mod. Phys. 68 963

[22] Mullins W W 1963 Solid surface morphologies governed by capillarity Metal Surfaces: Structure, Energetics
and Kinetics ed N A Gjostein and W D Robertson (Metals Park, OH: American Society of Metals)

[23] Schwoebel R L and Shipsey E J 1966 J. Appl. Phys. 37 3682
[24] Schwoebel R L 1969 J. Appl. Phys. 40 614
[25] Sun T, Guo H and Grant M 1989 Phys. Rev. 40 6763
[26] Edwards S F and Wilkinson D R Proc. R. Soc. A 381 17
[27] Janssen H K 1976 Z. Phys. B 23 377

Bausch R, Janssen H K and Wagner H 1976 Z. Phys. B 24 113
Janssen H K 1979 Dynamical Critical Phenomena and Related Topics (Lecture Notes in Physics vol 104)

ed C P Enz (Heidelberg: Springer)
[28] DeDominicis C 1976 J. Phys. (France) Colloq. 37 C247

DeDominicis C and Peliti L 1978 Phys. Rev. B 18 353
[29] Janssen H K 1992 From Phase Transitions to Chaos ed G Györgyi, I Kondor, L Sasvári and T Tél (Singapore:
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